How many times have we heard a manager or executive say “Just give me the number!”? This request smacks of frustration and conveys an unrealistic expectation. While this is slowly changing, single-point estimates are still the goal when making managerial projections at many healthcare providers today. In this post, I want to discuss an alternative approach.

# Tag Archives: probability

# Performance modeling: patient registration example

*Queueing theory* and modeling provide us with “closed-form” analytical solutions to problems involving, reasonably enough, queues. Indeed, this type of performance-focused modeling is central to properly planning and sizing infrastructure and facilities of many types, from a new hospital building with interconnected services to servers, bridges, and routers on a distributed communications network, checkout registers at a retailer, toll booths (and lanes) on an interstate, conveyor belts at an airport, or teller and drive-through windows at a bank. Complex models can be joined to form *queueing networks*.

# Evidence-based decision making: Bayesian probability basics

A pressing need exists to become more evidence-based, and to practice and deliver healthcare accordingly. Given fast-paced technological and regulatory changes, being able to develop a probabilistic outlook as to the range of possible outcomes in decision-making is increasingly important. This material introduces Bayes’ theorem, which is central to reassessing probabilities in light of accumulating evidence.